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A strong enthalpy formulation for the Stefan 
problem 
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Mechanical Engineering Department. Indian Institute of Technology. Bombay, India 

Abstract-This paper demonstrates how the condition of constancy with respect to time of the phase- 
change interface temperature can be incorporated to arrive at a ‘strong’ enthalpy formulation. The finite- 
difference solutions obtained with this formulation show that the problem of ‘waviness’ of the temperature 
histories encountered with the “weak’ formulation is now removed and accurate solutions are obtained 
even with a coarse grid irrespective of the time step. The formulation derived requires no ‘book-keeping’ 

of the phase-change node, and allows line-by-line integration of the finite-difference equations. 

iNTRODUCTiON 

ALL THE previous solutions [l-4] to the Stefan prob- 
lem have been obtained with what is termed as the 
‘weak’ enthalpy formulation. This formulation can be 

stated as 

(1) 

with the following conditions at the phase-change 

interface : 

and 

T = T, at .Y = xi (2) 

(3) 

where .yi is the location of the interface. 
Since i. dxi/dt represents the rate of evolution of 

the latent heat, it can be readily shown that equation 
(1) already satisfies the flux condition (3) at the inter- 
face. 

The implicit unite-difference form of equation (I) 
for L~niform grid spacings is given by 

KAt 
H:-H; =p&c+,+T; ,-27-y) (4) 

where ,j identifies the grid node, and superscripts n 
and o refer to the new and the old values, respectively. 
The right-hand side of equation (4) can be evaluated 
from the E----T relations given as follows : 

H = C,T, for T < r,,, (solid) (8 

H = HP, + C,T, for T = T,,, (phase change) (6) 

H = K%+c,r, for T > T,, (liquid) (71 

where HP< is a pseudo enthalpy defined as 

‘+ Ai df_I,, 
-dt-dt=i,= H,--H, 

where H, and H, are the liquid and solid enthalpies at 

the fusion temperature. 
Usually, the values of 7’in equation (4) are replaced 

by H only for the solid and the liquid nodes. For the 
phase-change node (H, <c H < H,), however. T is held 
at T,,. A consequence of this is that, till the intert%ce 
crosses the control volume surrounding the phase- 
change node, the nodal temperature is held constant. 
This yields temperature and heat flux histories which 
demonstrate a step-like or a wavy pattern. 

This pattern can be eliminated in two ways. First, 

the time step At can be iteratively estimated such that 
the entire control volume liberates the latent heat of 
the control volume. Voller and Cross [I] term this 
as the ‘node-jumping’ scheme ; this scheme, however, 

cannot be extended to the multidimensional problems. 
The second, and the more obvious alternative is to 
refine the mesh size (or decrease As), so that the time 
At over which the phase-change temperature Tis held 
at T,, becomes very small. and the essentially wavy 
solution appears smooth. This approach is adopted 

by Shamsunder [2]. In both the approaches, since 
values of T are recovered from H-T relations, ‘book- 
keeping’ is required to identify the phase-change and 
the single phase nodes. This precludes the possibility 
of using the line-by-line integration procedure to solve 
equation (4). 

In the present paper both the above-mentioned 
problems are eliminated in the following ways. 

First the H-T relationship is generalized in such a 
way that no ‘book-keeping’ is required; and conse- 
quently equation (4) can be solved by the Tridiagonal 
Matrix Algorithm (TDMA). 

Secondly, the problem of waviness is eliminated by 
satisfying one more condition at the interface, namely 

(9) 
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Biot number, hL/K 
specific heat 
heat transfer coefficient 
enthalpy 
thermal conductivity 
characteristic length 

dimensionless heat flux. 
(Stfo, ,,);‘.st 
Stefan number. 

c;,(T,,,- T, )I;. 
temperature 
time 
.x-coordinate. 

NOMENCLATURE 

Greek symbols 
!I thermal diffusivity. pC,,jK 
0 dimensionless tempcraturc 
i. latent heat 

: 
density 
dimensionless enthalpy 

CD’ negative of liquid fraction. 

Subscripts 
/; infinity 

i node number 
1 liquid or liquidus 
m melting point 
s solid or solidus. 

This condition has been used by Goodman [5] to 
develop closed-form integral solutions to the Stefan 

problem. The condition has also been used by 
Lazardis [6] for a two-dimensional Stefan problem, 
where finite-difference solutions are obtained by what 
is termed as the ‘variable-domain’ or ‘temperature’ 

based formulation of the Stefan problem. 

THE PRESENT CONTRIBUTION 

For the purposes of illustration WC consider a one- 
dimensional problem with uniform properties. Equa- 
tion (I) can then be written in a dimensionless form 

LIS 

(lz ?X2 (10) 

where 

(b = (H-H&i (11) 

0 = C,, (T- T,,,)‘i (12) 

T = rt:L2 (13 

x = A/L. (14) 

The solution to equation (10) will be obtained for 
the problem of solidification of a pure metal initially 
under saturated liquid state. The solidification is 
brought about by convective cooling (see Fig. I). The 
initial and the boundary conditions arc 

In terms of the dimensionless variables. the II-T 

relations can be written as 

II = 4, for (b < 0 (solid) (18) 

0 = 0 for 0 d $ G 1 (phase change) (19) 

II=(/PI forcb> I (liquid). (20) 

The above three relations arc now generalized as 

0 = C/I + C/I’ (21) 

whcrc 

4’ = 0.5[[ I -C/)1 - 1@1- I]. (22) 

Note that 4’ = 0 in solid, and 4’ = - I .O in liquid. 

At the phase-change node c,!I’ = -4. Now since Ct, 
represents the liquid fraction of the node. 
(1 + 4’) = (I - 4) represents the solid fractions. 

The implicit finite-difference form of equation ( IO) 

can now be written as : 

Grid node 
Control volume 

x=0 x=1 

FIG. I. One-dimensional phase change problem with convective cooling 
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jbr node 1 near X = 0 

#;[I+sl = S~~+S(~~-~~) 

-Bi(St+i?,_,)SAX+& (24) 

,/br last node N near X = 1 

where S = AT/AX’. (25) 

It will be readily appreciated that equations (23)) 

(25) satisfy the Scarborough criterion and are thus 
unconditionally stable. Further, if I$’ values are 
allowed to lag behind Q, values by one iteration, the 
equations can be solved by the TDMA. It has already 
been shown that the TDMA solutions are con- 
siderably faster than the point-by-point solutions 
when fine mesh size is used [7]. The latter, as has 

already been explained, is a requirement of ‘weak’ 
solutions to minimize the waviness problem. 

Introduction of generalized relations (21) and (22) 
however, does not eliminate the waviness problem. 
To eliminate this problem, an additional condition (9) 
is now written in dimensionless form as 

dfi d@ d/Y 
/ 

__2 + E! = 0, 
ds i = ?% ds c?z , cw 

It can easily be shown that the above condition, along 
with equation (2) or (19) is satisfied, ifthe temperature 
distribution in the solid region 0 < X < X, is given by 

(27) 

Hence 

Further, using equation (16), 8, = 0 can be recovered 

as 

0, = 0 = 

-&St X, 

1+&X, 

where, since (I + 4;) represents the solid fraction, X, 
is calculated as 

X, = 0’ (I +4;) dx. 
s 

(30) 

Thus at a given time step, QI values (and hence 4’ 
values) are taken to be the values corresponding to 
those calculated at the end of the previous time step. 
With this initial guess; equations (23)-(25) are solved 
by TDMA. At the end of iteration, #‘, X, and O,= 0 
are calculated and the next iteration is performed. 
Iterations were thus continued till the maximum 
absolute fractional change in 4 is less than 10b4. 

It should be noted that equation (27) is valid for 
small Stefan numbers (St < 0.5, say); for higher 
Stefan numbers, a higher order profile may be used 
as proposed by Goodman [5]. When this is done, 
evaluation of 8, I 0 must be suitably altered. 

It is shown in the next section that the above 
procedure yieIds non-wavy solutions. 

SOLUTIONS 

Figure 2 shows the comparison of the solutions 

obtained by Shamsunder [2] and by Basu and Date 
[7] with the exact solution for Bi = 1 .O and St = 0.1. 
The solutions of Shamsunder show waviness which 
decreases with decrease in AX. Basu and Date also 
observed waviness which almost vanished at 

AX = 0.025. 
Figure 3 shows the results of present computations 

FIG. 2. Comparison of exact and previous solutions. 
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FIG. 3. Comparison of exact and present solutions 
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UNE FORMULATION ENTHALPIQUE FORTE POUR LE PROBLEME DE STEFAN 

R&urn&--On dCmontre comment la condition de Constance par rapport au temps de la tempkrature de 
I’interface de changement d’Ctat peut etre introduite pour arriver ii une formulation enthalpique “forte”. 
Les solutions aux diffkrences finies obtenues avec cette formulation montrent que le probl+me “ondulatoire” 
des histoires de tem~~dture rencontrCes avec la formulation “faible” est d&pi& et que des solutions 
prCcises sont obtenues m&me avec une grille large par rapport au pas de temps. La fo~uIation suivie ne 
n&cessite pas une rkservation du noeud de changement de phase et elle fournit une integration ligne par 

ligne des tquations aux diffkrences finies. 



A strong enthalpy formulation for the Stefan problem 2235 

EIN STRENGER ENTHALPIEANSATZ FfiR DAS STEFAN-PROBLEM 

Zusammenfassung-Die vorliegende Arbeit zeigt, wie die Bedingung einer zeitlichen Konstanz der 
Grenzflachentemperatur beim Phasenwechsel so eingebunden werden kann, daB sich ein strenger Enthal- 
pieansatz ergibt. Die Ergebnisse einer Finite-Differenzen-Rechnung aufgrund dieses Ansatzes zeigen, da13 
das Problem der Welligkeit des zeitlichen Temperaturverlaufs, wie es bei dem weichen Ansatz auftritt, nun 
beseitigt wird. Selbst bei Verwendung eines weitmaschigen Gitters ergeben sich unabhangig von der 
Zeitschrittweite genaue Liisungen. Dieser Ansatz benotigt keine “Buchfiihrung” fur den Knoten beim 

Phasenwechsel und erlaubt eine schrittweise Integration der Finite-Differenzen-Gleichungen. 

QOPMYJIWPOBKA 3AAAYki CTE@AHA HA OCHOBAHMM rIOHXTMII “CHJlbHORm 
3HTAJIbfIllM 

hllOTa~H-nOKa3aH0, KaKnM o6pa3oM MOXHO YWTbIBaTb )‘CJlOBW IIOCTORHCTBB BO B~M‘WB TCMIIC- 

paT)‘pbI MeWjla3HOii rPaHHUb1 IIpEi @IOpM)‘JWipOBKe 3aEl’IEi CTe+,aHa C IIOMOUIbKl 3@@KTkiBHOii 3HTiU,b- 

IIHW. h”eHk+K IlOAyWHHbIX Ha OCHOB’.? AaHHOil $,O,,M)‘A&lpOBKH KOH‘YIHO-Pa3HOCTHbIX ,‘paBHeHHfi MOrYT 

6bITb HaiiAeHbI AaX?Z IlpH KpyIIHOii CeTKe He3tUWiCBMO OT Bp’ZMeHHOrO IUiWa. BbIBeAeHHaR I#IOpMyJIH- 

poeKa ne Tpe6yeT pernmpawin ysnoe +a30aoro nepexona npn n~Terpnpoaamin KoHewo-pa3HocmbIx 
PaBH’SHBii C nC~M‘2HHbIMIl KO3+$lll,HeHTaMH. 


