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Abstract—This paper demonstrates how the condition of constancy with respect to time of the phase-

change interface temperature can be incorporated to arrive at a ‘strong’ enthalpy formulation. The finite-

difference solutions obtained with this formulation show that the problem of ‘waviness’ of the temperature

histories encountered with the ‘weak’ formulation is now removed and accurate solutions are obtained

even with a coarse grid irrespective of the time step. The formulation derived requires no ‘book-keeping’
of the phase-change node, and allows line-by-line integration of the finite-difference equations.

INTRODUCTION

ALL THE previous solutions [1-4] to the Stefan prob-
lem have been obtained with what is termed as the
‘weak’ enthalpy formulation. This formulation can be
stated as
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with the following conditions at the phase-change
interface:
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where x; is the location of the interface.

Since 2 dx;/dt represents the rate of evolution of
the latent heat, it can be readily shown that equation
(1) already satisfies the flux condition (3) at the inter-
face.

The implicit finite-difference form of equation (1)
for uniform grid spacings is given by

" o KAt il e
H/—Hi:;)ZXT(T?+I+T,€ 1 —277) 4
where / identifies the grid node, and superscripts n
and o refer to the new and the old values, respectively.
The right-hand side of equation (4) can be evaluated
from the H-T relations given as follows :

H=C,T, for T < T,, (solid) (5)
H= H,+C,T, forT=T, (phasechange) (6)
H=1+C,T, for T> T, (liquid) h

where H,, is a pseudo enthalpy defined as

dr

where H; and H, are the liquid and solid enthalpies at
the fusion temperature.

Usually, the values of T"in equation (4) are replaced
by H only for the solid and the liquid nodes. For the
phase-change node (H, < H < H,), however, T is held
at T,,. A consequence of this is that, till the interface
crosses the control volume surrounding the phase-
change node, the nodal temperature is held constant.
This yields temperature and heat flux histories which
demonstrate a step-like or a wavy pattern.

This pattern can be eliminated in two ways. First,
the time step At can be iteratively estimated such that
the entire control volume liberates the latent heat of
the control volume. Voller and Cross [1] term this
as the ‘node-jumping’ scheme ; this scheme, however,
cannot be extended to the multidimensional problems.
The second, and the more obvious alternative is to
refine the mesh size (or decrease Ax), so that the time
At over which the phase-change temperature T is held
at T,, becomes very small, and the essentially wavy
solution appears smooth. This approach is adopted
by Shamsunder [2]. In both the approaches, since
values of T are recovered from H-T relations, ‘book-
keeping’ is required to identify the phase-change and
the single phase nodes. This precludes the possibility
of using the line-by-line integration procedure to solve
equation (4).

In the present paper both the above-mentioned
problems are eliminated in the following ways.

First the H-T relationship is generalized in such a
way that no ‘book-keeping’ s required; and conse-
quently equation (4) can be solved by the Tridiagonal
Matrix Algorithm (TDMA).

Secondly, the problem of waviness is eliminated by
satisfying one more condition at the interface, namely
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Bi  Biot number, hL/K
specific heat

h heat transfer coefficient
H  enthalpy

K thermal conductivity

L characteristic length

g* dimensionless heat flux,

(St+0..,)/St
St Stefan number,
CAT,—T,)s
T temperaturc
t time
X x-coordinate.

NOMENCLATURE

Greek symbols

2 thermal diffusivity, pC,/K

0 dimensionless temperature

7 latent heat

P density

®  dimensionless enthalpy

@ negative of liquid fraction.
Subscripts

x  infinity

j node number

1 liquid or liquidus

m  melting point

s solid or solidus.

This condition has been used by Goodman [5] to
develop closed-form integral solutions to the Stefan
problem. The condition has also been used by
Lazardis [6] for a two-dimensional Stefan problem,
where finite-difference solutions are obtained by what
is termed as the ‘variable-domain’ or ‘temperature’
based formulation of the Stefan problem.

THE PRESENT CONTRIBUTION

For the purposes of illustration we consider a one-
dimensional problem with uniform properties. Equa-
tion (1) can then be written in a dimensionless form
as

- A2
P 1o

where
b=(H-—H)j4 (1
0=CJ(T—T,)/ (12)
T =at/L’ (13)
X = x/L. (14)

The solution to equation (10) will be obtained for
the problem of solidification of a pure metal initially
under saturated liquid state. The solidification is
brought about by convective cooling (see Fig. 1). The
initial and the boundary conditions are

=1 0=0 at t=0 (15)
ol .
- = Bi(St+0,_ ) (16)
CX|v -0
cf
= 0. 17
ol 0 (17)

In terms of the dimensionless variables, the H-T
relations can be written as

0= for ¢ <0 (solid) (18)
=0 for0 < ¢ <1 (phasechange) (19)
0=¢—1 forp =1 (liquid). (20)
The above three relations are now generalized as
0=c¢+¢ 20
where
¢ =051 -l —]p|—1]. (22)

Note that ¢” = 0 in solid, and ¢’ = —1.0 in liquid.
At the phase-change node ¢ = —¢. Now since ¢
represents the liquid fraction of the node.
(1+¢") = (1 —¢) represents the solid fractions.

The implicit finite-difference form of equation (10)
can now be written as:

for general node j

1428 = S( 1 +j 1)

+8(d7 1 =20+ (23)

)+

Control volume

Grid node

boundary Insulated
boundary
T T T /
q* ¥ ; & / : o
- 1] 2 | | N
x=0 x=1

Fi1G. 1. One-dimensional phase change problem with convective cooling.
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for node | near X =0

i1 +S] = SP3+S(d7 — ¢7)

—Bi(St+0y . )SAX +¢5  (24)
Jfor last node N near X = 1
N1+ S] = SPi_ 1 +S(PN- 1 —dN) + b3
where S = At/AX?, (25)

It will be readily appreciated that equations (23)—
(25) satisfy the Scarborough criterion and are thus
unconditionally stable. Further, if ¢’ values are
allowed to lag behind ¢ values by one iteration, the
equations can be solved by the TDMA. It has already
been shown that the TDMA solutions are con-
siderably faster than the point-by-point solutions
when fine mesh size is used [7]. The latter, as has
already been explained, is a requirement of ‘weak’
solutions to minimize the wavingss problem.

Introduction of generalized relations (21) and (22),
however, does not eliminate the waviness problem.
To eliminate this problem, an additional condition (9)
is now written in dimensionless form as

1

df
dr

00 dx; a6

== — 4 = =0
. X dt Ot

(26)

i

1t can easily be shown that the above condition, along
with equation (2) or (19) is satisfied, if the temperature
distribution in the solid region 0 < X < X is given by
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Further, using equation (16), 8, _, can be recovered
as

—Bi St X,

Os-o= 1+BiX,

(29)
where, since (14 ¢)) represents the solid fraction, X,
is calculated as

i
X, = JO (1+¢;) dx. 30)

Thus at a given time step, ¢ values (and hence ¢’
values) are taken to be the values corresponding to
those calculated at the end of the previous time step.
With this initial guess; equations (23)—(25) are solved
by TDMA. At the end of iteration, ¢’, X; and 0, _,
are calculated and the next iteration is performed.
Iterations were thus continued till the maximum
absolute fractional change in ¢ is less than 10~ %,

It should be noted that equation (27) is valid for
small Stefan numbers (St < 0.5, say); for higher
Stefan numbers, a higher order profile may be used
as proposed by Goodman [5]. When this is done,
evaluation of 8, _ , must be suitably altered.

It is shown in the next section that the above
procedure yields non-wavy solutions.

SOLUTIONS

Figure 2 shows the comparison of the solutions

X obtained by Shamsunder [2] and by Basu and Date
0=0,_o|1~ ¥/ (27)  [7] with the exact solution for Bi = 1.0 and St = 0.1.
' The solutions of Shamsunder show waviness which
Hence decreases with decrease in AX. Basu and Date also
0 observed waviness which almost vanished at
fi’,t 0._Jx. (28) AX=002s.
2 ¢ Figure 3 shows the results of present computations
! 0.05 -~ AX=0.05(2)
wmn AX=0.1(2)
0.9f— 0 0 0 AX=0.025 (6)
- Exact {2}
0.8}—
*
o3
07—
0.8}—
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Stxr

FiG. 2. Comparison of exact and previous solutions.
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FiG. 3. Comparison of exact and present solutions.

with the strong enthalpy formulation in which 0.,
is obtained from equation (29). Since this cquation
recognizes the influence of the location of the inter-
face, extremely accurate and non-wavy solutions are
obtained even with AX = 0.2. The difference between
solutions obtained with AX =02 and 0.1 was
recognizable only beyond the third decimal place.
The solutions were also found to be independent
of the time step.

Thus the strong enthalpy formulation presented
here has removed the waviness problem besides allow-
ing the use of the Thomas algorithm.

It will be readily recognized that condition (28) is
general and can be applied to problems in which either
the temperature (i.c. f, _ o) or the flux (i.e. &0/0x], - o)
is specified. In the former case, the condition allows
evaluation of the gradient at x = 0, in the latter it
affords the evaluation of the boundary temperature.

CONCLUSIONS

The present paper has thus shown that the wavi-
ness problem associated with the ‘weak’ enthalpy
formulation is removed by satisfying the df/dz}, =0
condition at the interface. It is also shown that this
condition can be elegantly incorporated through
the boundary condition to obtain accurate solutions
with considerably coarser grids.
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UNE FORMULATION ENTHALPIQUE FORTE POUR LE PROBLEME DE STEFAN

Résumé—On démontre comment la condition de constance par rapport au temps de la température de

Pinterface de changement d’état peut étre introduite pour arriver 4 une formulation enthalpique “forte”.

Les solutions aux différences finies obtenues avec cette formulation montrent que le probléme “ondulatoire™

des histoires de température rencontrées avec la formulation “faible” est déplacé et que des solutions

précises sont obtenues méme avec une grille large par rapport au pas de temps. La formulation suivic ne

nécessite pas une réservation du noeud de changement de phase et elle fournit une intégration ligne par
ligne des équations aux différences finies.
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EIN STRENGER ENTHALPIEANSATZ FUR DAS STEFAN-PROBLEM

Zusammenfassung—Die vorliegende Arbeit zeigt, wie die Bedingung einer zeitlichen Konstanz der
Grenzflichentemperatur beim Phasenwechsel so eingebunden werden kann, daB sich ein strenger Enthal-
pieansatz ergibt. Die Ergebnisse einer Finite-Differenzen-Rechnung aufgrund dieses Ansatzes zeigen, dal
das Problem der Welligkeit des zeitlichen Temperaturverlaufs, wie es bei dem weichen Ansatz auftritt, nun
beseitigt wird. Selbst bei Verwendung eines weitmaschigen Gitters ergeben sich unabhingig von der
Zeitschrittweite genaue Losungen. Dieser Ansatz bendtigt keine ‘“‘Buchfithrung” fiir den Knoten beim
Phasenwechsel und erlaubt eine schrittweise Integration der Finite-Differenzen-Gleichungen.

DOPMVYJIMPOBKA 3AJIAYU CTE®AHA HA OCHOBAHUH MOHATHUA “CUIIBHON”
SHTAJIBITUHA

Annoramus—IIoka3zaHo, KakuM 06pa30M MOXHO YYHTBIBATH YCJAOBHE MOCTOSHCTBA BO BPEMEHH TeMIle-

patypsl MexdasHol rpasHILl IpH GopMymupoBke 3agadn Credana ¢ moMoIBIO ek THBHOMN IHTANL-

nuH. PelleHHs NOMyYeHHBIX Ha OCHOBE RAHHOH (GOPMYIMPOBKH KOHEYHO-PA3HOCTHBIX YPaBHEHHI MOTYT

6LIThL HalifieHbl Jaxe NPH KPYIMHOH CETKE HE3aBHCMMO OT BPEMEHHOro wara. BeiBeaeHHas dopmysin-

poBKa He TpeOyeT perucTpaluH y31oB (a30BOro mepexona Mpu HHTErPUPOBAHHA KOHEYHO-Pa3HOCTHBIX
ypaBHEHHIi ¢ IepeMeHHBIMH KobduuneHTaMu.
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